

Dark Matter Phenomenology using computational tools

I. Dark matter introduction, basic tools and how to install them

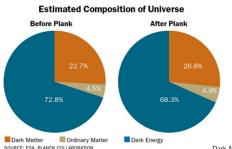
Alba Leticia Carrillo Monteverde

Facultad de Ciencias de la Electrónica

Guideline

- Dark Matter 101
 - What is Dark Matter?
 - Evidence
 - Evidence
 - DM candidates
 - Dark Matter Candidates
 - Relic Density
 - Detection of DM
- 2 Computational Tools
 - FeynRules
 - MicrOmegas
 - MadDM
 - CalcHEP
- Model
 - Higgs Portal

Dark Matter 101 Computational Tools Model What is Dark Matter?
Evidence
Evidence
DM candidates
Dark Matter Candidates
Relic Density


Dark Matter 101

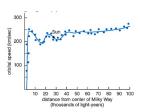
What is Dark Matter? DM candidates

What is Dark Matter?

We called Dark Matter (DM) to the matter that is not visible directly because it doesn't emit or absorb radiation, and the only visible effect is its gravitational effect over celestial objects.

Identify the nature of DM is one of the most interesting problems in modern physics.

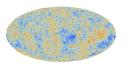
What is Dark Matter?
Evidence
Evidence
DM candidates
Dark Matter Candidat


Evidence

(a) Coma cluster

(c) Bullet cluster

(b) Rotation curves

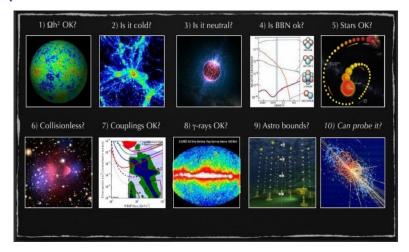


(d) Simulations

Evidence

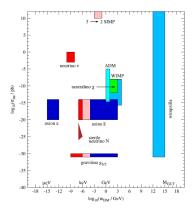
(a) Coma cluster

(c) Cosmic Microwave Background

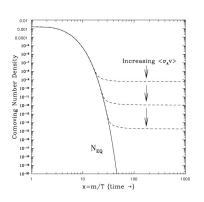

(b) Rotation curves

(d) Simulations

Dark Matter 101 Computational Tools Model What is Dark Matter? Evidence Evidence **DM candidates** Dark Matter Candidat


10 Questions for a DM candidate

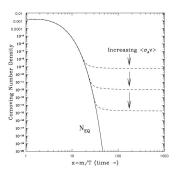
What is Dark Matter? Evidence Evidence DM candidates Dark Matter Candidates


DM Candidates

The possible connection with new physics beyond the SM has stimulated the proliferation of dark matter candidates.

8/36

Relic Density



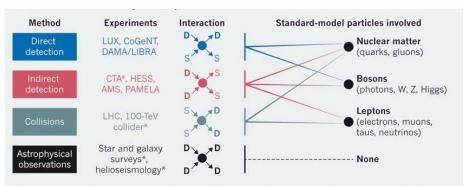
- When the interaction rate of a specie of particles falls down the expansion rate of the Universe, the particle decouple.
- The relic density is the quantity of a certain specie of particles that remains present as a remnant of the Big Bang.

Boltzmann Equation

$$\frac{dn_X}{dt} = -3Hn_X - \langle \sigma v \rangle (n_X^2 - n_{X,eq}^2).$$

Relic Density

$$\Omega_X h^2 pprox rac{3 imes 10^{-27} cm^3 s^{-1}}{\langle \sigma v \rangle}$$


- When the interaction rate of a specie of particles falls down the expansion rate o the Universe, the particle decouple.
- The relic density is the quantity of a certain specie of particle that remains present as a remnant of the Big Bang.

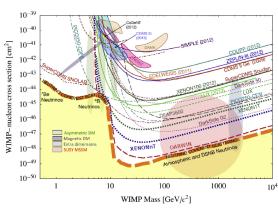
$$\Omega_X h^2 = 0.1198 \pm 0.0012$$

Planck 2018 Results, arXiv:1807.06209

What is Dark Matter? Evidence Evidence DM candidates Dark Matter Candidates Relic Density Detection of DM

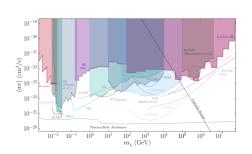
Detection of DM

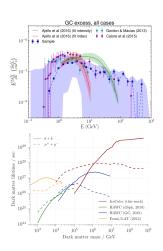
LUX, Large Underground Xenon experiment; CoGeNT, Coherent Germanium Neutrino Technology Dark Matter Experiment; CTA, Cherenkov Telescope Array; HESS, High Energy Stereoscopic System; AMS, Alpha Magnetic Spectrometer; PAMELA, Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics; LHC, Large Hadron Collider. *Planned experiment or observations.


What is Dark Matter? Evidence Evidence DM candidates Dark Matter Candidates Relic Density

Detection of DM

Direct Detection





What is Dark Matter? Evidence Evidence DM candidates Dark Matter Candidates Relic Density Detection of DM

Indirect Detection

arXiv:1912.09486

C. Pérez de los Heros (2020)

DM candidates

Detection of DM

Colliders

ATLAS NOTE

ATLAS-CONF-2016-070 4th August 2016

Search for new light resonances decaying to jet pairs and produced in association with a photon or a jet in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

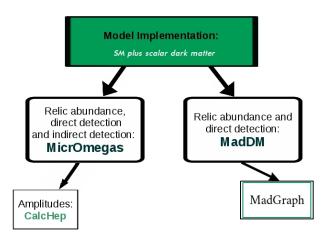
This note describes a search for new resonances decaying to pairs of jets in 15.5 fb⁻¹ of proton-proton collisions with a centre-of-mass energy of $\sqrt{s} = 13$ TeV recorded during 2015 and 2016 by the ATLAS detector at the Large Hadron Collider. The search requires the new resonance to be produced in association with a high-py photon or jet, such as those radiated from the colliding partons, in order to efficiently trigger on events containing light resonances. The distribution of the invariant mass of the pair of iets is examined for local excesses above a data-derived estimate of the smoothly falling background. No evidence of anomalous phenomena is observed in the data, which are used to exclude effective cross-sections of processes with Gaussian-shaped contributions to the observed dijet mass distribution and regions of the parameter space of a lepto-phobic axial-vector Z' benchmark model. These results extend limits on light dijet resonances obtained by ATLAS with 2015 data.

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

v:2011.09308v1 [hep-ex] 18 Nov 2020

Submitted to: Eur. Phys. J. C

CERN.EP.2020.18 19th November 2020


Search for dark matter produced in association with a single top quark in $\sqrt{s} = 13 \text{ TeV } p p$ collisions

> with the ATLAS detector The ATLAS Collaboration

This paper presents a search for dark matter in the context of a two-Higgs-doublet model together with an additional pseudoscalar mediator, a, which decays into the dark-matter particles. Processes where the pseudoscalar mediator is produced in association with a single top quark in the 2HDM+a model are explored for the first time at the LHC. Several final states which include either one or two charged leptons (electrons or muons) and a significant amount of missing transverse momentum are considered. The analysis is based on proton-proton collision data collected with the ATLAS experiment at $\sqrt{s} = 13$ TeV during LHC Run 2 (2015– 2018), corresponding to an integrated luminosity of 139 fb⁻¹. No significant excess above the Standard Model predictions is found. The results are expressed as 95% confidence-level limits on the parameters of the signal models considered.

Computational Tools

Tools

Model Implementation

- FeynRules is a Mathematica package that allows the calculation of Feynman rules.
- The user provide FeynRules with the minimal information required to describe the new model.
- The Feynman rules calculated by the package can be used to implement the NP model into other existing tools as MicrOmegas.

SARAH

- SARAH is a Mathematica package for building and analyzing SUSY and non-SUSY models.
- It calculates all vertices, mass matrices, tadpoles equations, one-loop corrections for tadpoles and self-energies, and two-loop RGEs for a given model.
- SARAH writes model files for FeynArts, CalcHep/CompHep, which can also be used for dark matter studies using MicrOmegas, the UFO format which is supported by MadGraph 5 and for WHIZARD and OMEGA.
- The implementation of new models is efficient and straightforward as in the other model implementation options.

LanHEP

- The LanHEP is a program for Feynman rules generation in momentum representation.
- LanHEP is written on C programming language.
- It was developed since 1994 as a part of CompHEP project to help to create new physical models starting from the Lagrangian.
- LanHEP read input file which describes the physical model by the set of statements.
- THe physical model is defined by the tables of parameters, particles and interaction vertices with explicit Lorentz structure.
- Outputs: LaTeX, FeynArts, CompHEP

To install FeynRules

- VERSION: A INSTALAR: FeynRules 2.3
- AUTHORS: Adam Alloul, Neil D. Christensen, Celine Degrande, Claude Duhr, Benjamin Fuks
- PROGRAMMING LANGUAGE: Mathematica package
- DOWNLOAD: http://feynrules.irmp.ucl.ac.be/
- $\bullet \ \ DATABASE: \ http://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage$

MicrOmegas

- Compute the relic density of DM in a generic model of particle physics
- Computes the rates for dark matter direct and indirect detection

```
    ⊜ galletita@galleta: ~/Documents/ProgramasPhysics/micromegas_4.2.5/InerteFR

  back matter candidate is '-HO' with spin=0/2 mass=5.00E+01
   = MASSES OF HIGGS AND OOD PARTICLES: ===
Higgs masses and widths
PROCESS: h->2*x
PROCESS: N+->2*x
PROCESS: Z->2*x
PROCESS: h->N-,E,ne
Delete diagrams with W+<!
PROCESS: h->Z,ne,Ne
  elete diagrams with Z<1
h 120.00 1.01E+00
  asses of odd sector Particles:
  H8 : MH8 = 50.0 || ~A0 : MA0 = 60.0 || ~H+ : MHch = 98.8
==== Calculation of relic density =====
PROCESS: -HD.-HD->AllEven_17xfne_Ne_nn_Nn_nl_Nl_e_E.m.N.l.L.u.U.c.C.t.T.d.D.s.S.b.B.a.Z.W+.W-.g.b
   IOCESS: ~H0.~H0.>Z.ne.Ne
Delete diagrams with %2+W<1
PROCESS: ~H0,~H0->W-,E,ne
Delete diagrams with %2+W<1
  etete utagrans with Airwei
ROCESS: -HB,-AB->AllEven,1*x(ne,Ne,nn,Nh,nl,Nl,e,E,n,M,l,L,u,U,c,C,t,T,d,D,s,S,b,B,a,Z,N+,N-,g,h
ROCESS: -AB,-AB->AllEven,1*x(ne,Ne,nn,Nh,nl,Nl,e,E,n,M,L,L,u,U,c,C,t,T,d,D,s,S,b,B,a,Z,N+,N-,g,h
 XT=2.71e+01 Omega=2.28e-03
# Channels which contribute to 1/(omega) more than 1%.
   Relative contributions in % are displayed
    86% ~H0 ~H0 ->b B
7% -H0 -H0 ->c C
5% ~H0 ~H0 ->l L
  mega_h^2 = 2.28E-03
  annihilation cross section 1.05E-24 cm^3/s
  -H8,-H8 -> L 5.1
                           8.71E-01
7.08E-02
5.17E-02
5.44E-03
```

```
=== Calciation of CMT.walcoms spoiltones ==== 
PROCESS: QUBAS: -00-QUBAS: -00
  total width=1.005367E+00
    and Branchings:
5.197487E-05 h -> Z,Z
4.896016E-04 h -> N+,W-
3.752175E-07 h -> n,M
       .575421E-24 h -> g,g
.946963E-01 h -> ~H0,~H0
    V+ : total width=2.013035E+00
    and Branchings:
       .109842E-01 N+ -> ne,E
       .109839E-01 W+ -> nm,F
.109020E-01 W+ -> nl,L
.160457E-01 W+ -> u,D
       .687810E-02 N+ -> c.0
       .690255E-02 N+ -> u,S
         .154001E-01 W+ -> c,S
.354453E-05 W+ -> u,B
         89664E-03 N+ -> c,B
       alletita@galleta:-/Documents/ProgramasPhysics/micromegas 4.2.5/InerteFR$
```

To install

- VERSION A INSTALAR: micromegas-5.2.7
- AUTHORS: Genevieve Belanger, Fawzi Boudjema, Alexander Pukhov y Andrei Semenov
- PROGRAMMING LANGUAGE: C y Fortran
- DOWNLOAD: https://lapth.cnrs.fr/micromegas/

MadDM

- MadDM is able to calculate the dark matter relic abundance in generic models which include a multi-component dark sector, resonance annihilation channels and co-annihilations.
- MadDM aims to bridge the gap between collider oriented event generators and dark matter physics tools.
- The direct detection module calculates spin independent and spin dependent dark matter-nucleon cross sections and differential recoil rates as a function of recoil energy, angle and time.
- Also provides a simplified simulation of detector effects for a wide range of target materials and volumes.

arXiv:1308.4955

MadGraph

- MadGraph is very popular among theorists and experimentalists alike as it
 contains all the elements necessary for SM and BSM phenomenology, such as
 the computations of cross sections, the generation of hard events and their
 matching with event generators, and the use of a variety of tools relevant to
 event manipulation and analysis.
- New models with complex DM processes can be easily calculated in the MadGraph framework.
- The files needed to run a particular model are given by Feynrules.
- Cross check with other programs.

arXiv:1308.4955

To install: First MadGraph 5

- VFRSION: MG5-3.2.0
- AUTHORS: J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, M. Zaro
- REQUIREMENTS: Python version 2.7 or 3.7 (or higher) and gfortran/gcc 4.6 or higher
- DOWNLOAD: http://madgraph.phys.ucl.ac.be/

To install MadDM

- VERSION: maddm-3.1
- AUTHORS: Mihailo Backovic, Kyoungchul Kong, Fabio Maltoni, Olivier Mattelaer, Antony Martini and Gopolang Mohlabeng
- PROGRAMMING LANGUAGE: Phyton and Fortran
- DOWNLOAD: https://launchpad.net/maddm

MadDM


```
(or enter the location of param card to be used)
DARK MATTER CANDIDATE:
    'name': '-H0'.
    'antiname': '~H3',
     'spin': 1,
    'charge': 0.00.
     'mass': 'ndl MHG'
     'width': 'mdl WH8',
     pdg code': 35.
    'line': 'dashed'.
    'propagator': '
     'is part': True.
    'self antipart': True.
    'type': '
    'counterterm': {}
Enter the coannihilation particles:
(press Enter to automatically find the coannihilation particles)
(Enter 'particles' to see a list of particles)
Enter the mass difference ratio desired for coannihilating particles [8.1]:
(Enter 0 for no coannihilating particles)
 ----- Generating Diagrams -----
Trying DM particle1 DM particle1 > fs particles fs particles QED=4 SIEFFF=8 SIEFFF=8 SIEFFF=8 SDEFFF=8 SDEFFF=8
Done
```

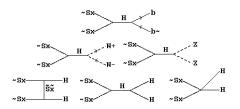
CalcHEP

- This is a package for the automatic calculation of elementary particle collisions and decays in the lowest order of perturbation theory.
- Provides an interactive environment where the user can pass from the Lagrangian to the final distributions effectively with a high level of automation.

The interactive session of CalcHEP enables the user to:

- Load a model and calculate its dependent parameters
- Choose between Feynman and unitary gauge and calculate decay widths and branching ratios by specifying the incoming and out-going particles, allowing us to remove particular diagrams from the calculation
- Generate and display Feynman diagrams and the squared ones and also the Latex output for them
- Calculate analytic expressions for the squared diagrams using the built-in symbolic calculator and export the results to different formats for further symbolic manipulations in those packages

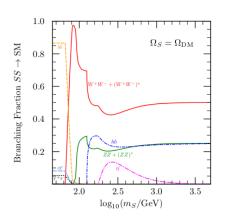
arXiv:hep-ph/9908288

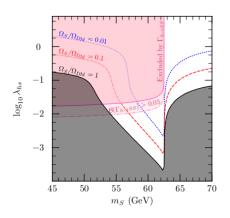

To install

- VERSION: calchep-3.8.10
- AUTHORS: Alexander Pukhov, Alexander Belyaev, Neil Christensen
- PROGRAMMING LANGUAGE: C and Fortran.
- DOWNLOAD: http://theory.sinp.msu.ru/pukhov/calchep.html

Simplest Model

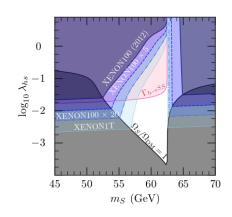
Model: SM plus extra DM scalar


The most simple SM extension. It is called the Higgs Portal due to all annihilation processes of DM particle involve a Higgs boson.



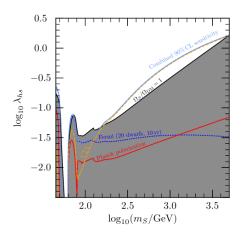
The Lagrangian with symmetry Z_2 that warranties the stability of the DM candidate is

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}\mu_S^2 S^2 - \lambda_p S^2 H^{\dagger} H - \frac{1}{2}\lambda_S S^4$$


What do we want to reproduce in a first exercise?



Cline and Scott, arXiv:1306.4710


Direct Detection

Cline and Scott, arXiv:1306.4710

Indirect Detection

Cline and Scott, arXiv:1306.4710

Higgs Portal

Thank you for your attention.