Ponente
Descripción
In this talk, I will discuss a phenomenon called cosmic inflation in which the Universe went through accelerated exponential expansion to solve the horizon problem of Cosmological Microwave Background within a billionth of a trillionth of a trillionth of a second, in the very early Universe. This accelerated expansion, in its minimal form, is driven by a scalar field (inflaton) and it takes place when this scalar field slowly rolls down a potential well. However, the origin of this scalar field and the correct form of the scalar potential remains an open question in cosmology. I will present a string theory motivated model where the inflaton is connected to the geometry of the internal space -- the overall volume of it drives the inflation. In particular, I will present a construction where the overall volume modulus (scalar field) is dynamically stabilized to an exponentially large value only via perturbative corrections, also known as perturbative large volume scenario (LVS). In this framework, the robustness of the single-field inflationary model is checked against possible sub-leading corrections. In the later part of my talk, I will focus on the global embedding of the fibre inflation in perturbative LVS and show how our constructions pose less challenge in realizing a successful period of inflation. Finally, I will end my talk by presenting a multi-field inflationary analysis.